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We consider below the solution of the problem of the finite precession of an 
ufwmrncWic rigid body under the action of the rotation of an internal fly- 
wheel whose axis is arbitrarily fixed In the body. It is shown that In the 

general case of rotation of a fly-&heel around an 
arbitrary axis, the supiicirting body accomplishes 
a pure rotation around another axis called the 
accompanylllc axlij. Formulas are obtained for the 
determination of the direction of the flywheel 
axis in the body from the given magnitude of the 
spatial Precession of the supporting body. 

Let us assume that the dii,ection of flywheel 
rotation axis relative to the principal inertia 

of the body (see Fig. l), Is de- 
termined by the angles u and v , that the 
angular velocity of the flywheel relative to the 
frame is n(t) and that its moment of inertia 
rclatlve to th: axis of rotation is J . Moreover, 
we shall consider that initially the supporting 

Fig. 1 body and the flywheel were stationary, i.e. the 
sum of their kinetic moments equalled zero. Then, 

from the law of conservation of kinetic moments, for the supporting body- 
flywheel system we have 

Ao,+JQ(t)sinvsinp== Bw, -Ji- JB (t) sill Y COS p = 0 (1) 

cm, + JO (1) CO9 Y = 0 

where ,g, B and C are the Principal moments Of inertia Of the supporting 
body together with the flywheel, and ui,, my anti ~1, are the Projections of 
the angular velocity vector of the body onto its Principal axes x9 y and 2. 
In order to find the motion of the body under the action of rotation of the 
flywheel we must replace the projections of the angular velocity in Equa- 
tions (11 by their expressions in terms of the angles and Product of the 
angles determining the orientation of the supporting body in sgace. In the 
problem considered it is convenient to define the orientation of the body 
by means of the Cayley-Klein parameters a and B , connected with the 
Euler angles 0, $ and rp by the relations 
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The *equation describing the motion of the body can be written in the form 
111 

cc’ = Vaioza + V2 (my t $1 P, f3’ = - l/riozP - VI (0 Y - iox) a (3) 

By substituti here the values of w,,u)~ and W, by their expressions 
from Equations (1 , we obtain n? 

JBCOSV a_JQsinv cosp ’ 
a’=:-_i 

zc 2 ( 
--jj-+ isy+ 

JQ2yvp+ 
JQ sin v cos p 

2 (-g--iT)a 
(4) 

p’= i 
sin p 

From the form of this system it follows that the precession of the frame 
of the supporting body is completely determined from the angle of precession 
of the flywheel and does not depend on the nature of the velocity variations 
of its rotation. Formally, this follows from the fact that In the described 
system we can eliminate the time t and as the independent variable intro- 
duce the precession angle of the flywheel 

t 
z = s i-2 (t) c-it 

0 

(51 

After this, system (4) takes the form 

a’=-_i (6) 
f$zi 

Here the prime denotes differentiation with respect to 7 . Equations 
(6) represent a homogeneous, linear system of equations with constant coef- 
ficients. 

As ilsu~l., we s!lal_l seek its solution in the form 

a = MeYT, @ = NeY’ (7) 

By setting up the characteristic equation of the system (6), we find 

It is easy (referring to the original system (1)) to note that the ex- 
pression under the radical is nothing but the relation u"/ @, where 
W2 = !JJ; + u_lP + u&z , so that from (8) there follows a relation which is valid 
at any instant of time 

o/B=A=const 69 

The solution for the parameters a and % can be written as 

a = Mle%i~+ + Mae-‘ld~~, p = Nl&iht j._ NaeJtdhs (IO) 

The constants of integration M and .V are connected by the following 
dependencies 

Nl = -ik,Ml, N, = - ik,M2 (ii) 

Iierc, the coefficients kl and R, are defined by Formulas 
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However, we should keep in mind condition 

a3 + @ = 1 (13) 

from which, after substituting in it solutions (10) anti taking (11) into 
account, it follows 

M,Icp, (1 + k&) -f M,M< (1 + k&J = 1 (14) 

Tnus, the Cayley-Klein parameters CI and p 
the Precession angle 7 

expressed as functions of 
of the controlling flywAee1, have the form 

a = &$/,ih~ + j,z&e-%~h~ p=- ik,M,ef/Xih' _ ikaMae-flZ~h5 (15) 

Since the moduli of the constants X1 and ,va satisfy Equation (IQ), the 
obtained solutions actually contain only three unknown real. co'nstants of 
integration, corresponding to the three degrees of freedom of the s atial 
precession of the body. Let us multiply the first of Equations (15 P in turn 
by k, and h, and each time subtract from it the second equation. After thi:: 
we get 

(k, - kJ M~eJt”ihS = k,a - ip, (k, - kJ MlifriAT = k,a - ip (46) 

Hence there immediately ensue the two complex integrals 

(k,u - ip) e’jzihr = con&, @,a - if3) t~-‘~~~+ = const (17) 

In order to solve the problem in Euler angles we should express a and 
B in accordance with relations (2), then the integrals (17) take the form 

[k, ~0s 1/~0~/Z~(*iQ) + sin l/~e~/~i(*-Q)~ :/&hi = const 

[& ~0s lj&'/lifJ'tQ) + sin I/z&'/~~(+-~)] ,'/&s = const WO 

If we multiply the last two integrals by each other and replace k, and 
k, by their representations, we get an integral not containing the argument T 

[C-l cot V sin 0 - cos 6 (Be1 C0s 4p c0s p + A-l sin ‘p sin p) - 

- i (fP sin ‘p cos p - A-l cos cp sin p)] ei+ = const tw 

This integral contains all the three Euler angles R, $ and T . However, 
we can obtain an integral, which also is an integral of the problem, and 
which contains only the two Euler angles B and 
ample, the modulus of any of the integrals in (18) 

q by expressing, for ex- 

03s 0 -f- taa Y sin 8 (CfF cos 9, cos p + CJI-~ sin cp sin p) = const (20) 

In order to realize the precession of the body from some initial Position 

601 all, Q, to a reqtiired final position el, I#~, vl it Is necessary to choose 
in an appropriate way the flywheel axis setting angles p and v and also 
Its precession angle 7 . Here we should keep In mind that both the values 
of the moments of inertia A, s and C , as well as the directions of the 
principal axes in the body, generally speaking, depend on the flywheel set- 
ting angles v and v . However, for comparatively small-sized flywheels 
this dependence can be neglected in practice. Then, in order to determine 

%""'"" 
and we can directly use the obtained integrals (19) and 

The fynal foriuias for determining the setting angles of the flywheel. 
axis can be wrltten as 

B~1~=A[slnA~(cos8,coscp,sin8,-cosB,coscp~sin8,)f 

+ cos Arp(sinp,sinB,+ sincp,sin8,) - sine,sinql- sin0,sinqd x 
x [sin A$ (- cosi3, sin(p, singo f eos6, sine&sin83 -& 

+ cos Arp (cos qr sin 6 e + cos ‘ps sin 8 3 - sin B1 cos gt, - sin 8 Q cos tp,l-l w 
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ctanv = [cos9,- cos 0 II [B-l cos p (sin 0 1 cos n - sin 8 o cop CpJ + 
fA-lsin~~(sinB~sincp~-sine,sin~~l-l 

A$ =$I-% 

(22) 

By knowing )1 and v it Is easy to compute X and k,,, , and then, 
using any of the Integrals in (IS), to find also the angle 7 . Thus, the 
derived formulas make it possible to determine the flywheel setting angles 
and its precession angle 7 , needed for realizing the required reorlen- 
tation of the supporting body. 

In order to elucidate the general nature of the motion of the supporting 
body under the action of an internal flywheel rotation, we return again to 
integrals (17). Expression (12) is written as 

ICCNV 
b=I*CR fP +A2 ( -- I( co.+ p sin%F ‘It 

) 
R exp 

[ 
- i tar1 (+q)] (23 

Let us introduce the new angles u* and v'* defined by Formulas 

B 
‘Bnp* = yfmp, cosv* = s, 1 COG p 

sin y* = - ( - R P 

Then, for the coefficients kl and kz we get 

k, = cot l/zv*e-iY*, k, = - t.n l/ay*+‘* 

sina p 
+ A’ 

‘IS 
(24) 

(25) 

By substituting these expressions into Integrals (17) and by multiplying 
them by some constant factors, we write them In the form 

(a cos l/sv*e-%iP* _ ip sin l/av*e'llii'*j eWAs = comt 

(- ai sin l~2v*e-%i~* + p cos l/2V*tJ:i~* ) e-'12ihr = comt 
(26) 

The expressions in the brackets are the Cayley-Klein parameters of the 
total precession from a system of stationary axes to a system of axes con- 
nected to the supporting body but not coinciding with its principal Inertia 
axes. We can call this latter system of axes connected to the body, the 
accompanying system since one of its axes, by forming the angles u* and V* 
'with the principal inertia axes of the body, accompanies the flywheel axes 
In the body; tan p* and tan v* are determined from the relations (24). 

The angle u*, although It will not be an Euler angle (a precessionangle), 
actually differs from it by a constant magnitude. Therefore, by denoting 
the Euler angles in the accompanying system of. axes relative to the stationary 
system by 0*,Jl*,rp*, and the corresponding Cayley-Klein parameters &y a*and 
8*> we can write the integrals (26) In the form 

a*elliih+ = const, fi*e-'/*ihr = con& (27) 

07, in the angles 0*, $* and 'p* 

cos l/,~*ew(+*+v++~s) - - const, sin l/pe%W'-(4*-A', = co& 
(28) 

Hence, it becomes clear at once that the angles EI* and $* remain con- 
stant during the motion, while the angle 'p* changes linearly with 7 , i.e. 

0* = es* = const (29) 9 q* = l#o* = const, ‘p* = rp,* - at 

Thus, under the rotation of an internal flywheel around an arbitrary flxed 
axis, the frame of the supporting body accomplishes a pure rotation around 
akother fixed axis whose direction in space is given by the angles EI* and 

t 
and in the body by the angles II* and v*. We note that the Integrals 

16) and (20) obtained earlier express nothing but the constancy of the 
cosines of the angles between the axis of rotation of the body and thestation- 
ary coordinate axes. It Is obvious that the rotation axis of the body co- 
incides with the flywheel axis only in the case either when A = B = C .or 
when the flywheel axis Is directed along one of the principal inertia axes 
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of the body. 

By the Euler theorem [2] every reorientation.of the rigid body can be 
kinematically realized by means of its precession around some stationary 
axi-. The results obtained indicate that similar precessions can be effected 
dynamically with the help of one flywheel with a fixed axis. In order to 
find the required setting angles of the flywheel axis in the body from the 
given initial and final positions of the supporting body, on the basis of 
kinematic constructions [2], we should determine the rotation axis of the 
supportin 
mulas (24 , 7 

body, i.e. find the angles p* and v*, and then, by using for- 
compute the desired angles p and v . 

Thus, calculation of precession of the supporting body around an arbitrary 
axis under the action of the rotation of an Internal flywheel, can be carried 
out by relations analogous to the calculation of the precession of the body 
around one of its principal inertia axes, 9.e. using the equations of planart 
precession when calculating spatial precession. 

In-this case the last of Equations (29) will have the form 

JT + ‘p* (Cz cos2 v* + B2 sina v* cos2 p* + A2 sin2 v* sin2 p*)‘/’ = const (30) 

where the square root plays the role of some reduced moment of inertia of 
the supporting body relative to its rotation axis. Of course, this conclusion 
remains valid only In the case when the initial kinetic moment of the sup- 
porting body-wheel system equals zero. 
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