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We conslder below the solution of the problem of the finlte precession of an
uusynmelric rigld body under the action of the rotation of an internal fly-
wheel whose axls is arbitrarily fixed in the body. It is shown that in the
general case of rotation of a flywheel arcund an
arbitrary axls, the supporting body accomplishes
Z a pure rotation around another axls called the
accompanylng axis. Formulas are obtained for the
determination of the direction of the flywheel
axis in the body from the glven magnitude of the
spatial precession of the supporting body.

Y Let us assume that the direction of flywheel
rotation axis relative to the principal inertia
axes x, ¥, & of the body (see Fig. 1), is de-
termined by the angles wu and v , that the
angular veloclty of the flywheel relative to the
frame is Q{#} , and that i1ts moment of inertia
relatlve to the axls of rotation is J . Moreover,
we chall consider that initially the supporting

Fig. 1 body and the flywheel were stationary, 1l.e. the

sum of thelr kinetlc moments equalled zero. Then,

from the law of conservation of kinetic moments, for the supporting body-
flywheel system we have

Ao+ JQ (1) sinvsinp = 0 Bo, 4+ JQ (t) sinveosp = 0 (1)
Co,+ JR () cosv=20

where A4, B and (¢ are the principal moments of inertla of the supporting
body together with the flywheel, and w,, w, and w, are the projections of
the angular velocity vector of the body onto 1ts princilpal axes x, y and z.
In order to find the motion of the body under the action of rotation of the
flywheel, we must replace the projectlions of the angular veloclity in Equa-
tions (1) by their expressions in terms of the angles and product of the
angles determining the orientation of the supporting body in space. In the
problem considered it 1s convenlent to define the orientation of the body
by means of the Cayley-Kleln parameters o and B , connected with the
Euler angles 8, y and ¢ by the relations

o == COS lifzee'/:'i(‘b"’@) B = | sin l!eﬁe'/{i(‘i"’@) (2)
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( ]The:equation describing the motion of the body can be written in the form
1

o =500+ Y (0, + i) B, B = —thioB — (o, — iv)a 6))

By substitutl here the valiues of w,,w, and w, by thelr expressions
from Equations (?%, we obtaln

.  JQcoswv JQ sinv fecosp .sinp
. .JQecosw JQsinv [cosp .sinp
B=i——g —B+—3 (B*‘A)“

From the form of this system it follows that the precession of the frame
of the supporting body 1s completely determined from the angle of precession
of the flywheel and does not depend on the nature of the veloclty variations
of its rotation. Formally, this follows from the fact that in the described
system we can eliminate the time ¢ and as the independent variable intro-
duce the precession angle of the flywheel

t
‘t:S Q (1) dt ©
0
After this, system (4) takes the form
. Jcosw Jsinwv fcosp . sin
(T +555)e

1

@ =T % T3 B A 6
. Jcosv Jsinv fcosp .sinp
§=i—g B+ (B —i )“

Here the prime denotes differentiation with respect to 1 . Equations
(6) represent a homogeneous, linear system of equations with constant coef-
ficlents.

As usual, we s3hall seek its solution in the form
o= Me", B = Ne'" {7y

By setting up the characteristic equatlon of the system (6), we find
i [(Jcosv\2 J sin vcos p \2 J sin v sin n\27% iA
v=+ 5 [(C ) HEFEE) (Y = @

It is easy (referring to the original system (1)) to note that the ex-
pression under the radical 1s nothing but the relation wz/ n®, where
w? = w® + 0,2 + w,? , so that from (8) there follows a relation which 1s valid
at any instant of time

® / Q = A = const 9
The solution for the parameters a and $ can be written as
o = Mlel/,i)\t + Mze—l/’ih, B — Nle‘/'i)" + Nze_’/’ih (10)
The constants of integration M and ¥ are connected by the following
dependenciles

N1 = MiklMll Ng = ""'ikgMz (11)

Herc, the coefficients J, and %, are defined by Formulas

) ‘cot V cosp _sinp \-1 cot2v |, costp | sinfp o\
]‘1.2=( I iR)( Bt A) (R=( o t—m T =g (12)
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However, we should keep in mind condition
ac+fp=1 (13)

from which, after substituting in it solutlons (10) and taking (11) into
account, 1t follows

MMy (4 + Ry + MoMy (1 Roky) = 1 (14

Tnus, the Cayley-Klein parameters o and 8 , eXpressed as functions of
the precession angle 11 of the controlling flywheel, have the form

@ = M g ppehite B = — ik My — iy Moe™ AT (15)

Since the moduli of the constants )/, and ¥, satisfy Equation (14), the
obtained solutions actually contain only three unknown real constants of
integration, corresponding to the three degrees of freedom of the spatial
precession of the body. Let us multiply the first of Equations (15) in turn
by 4, and &, and each time subtract from it the second equation. After this
we get

(ky — kg) Mpe™/#" = o — i, (ky — k) My = o — iB (16)
Hence there immediately ensue the two complex integrals
(ke — iB) €7 = const, (kg — iB) e~ /#** = const (1n

In order to solve the problem in Euler angles we should express a and
B in accordance with relations {2), then the integrals (17) take the form

[k; c0s 1/,067H8+®) 1 gin 1/, ge'aiéey JWaldt — congt

[y 008 1/,0e T H¥¥9) L gin 1/,0e"/84=9)] (=A% — gongt 18
If we multiply the last two integrals by each other and replace #4; and
k, by thelr representations, we get an integral not containlng the argument r

[C-1 cot vsin® — cos@ (B-lcosp cosp + Al sing sinp) —
— i (B-lsingcosp — A1 cos @ sinp)] e*¥ = const (19}

This integral contains all the three Euler angles 4§, ¢ and ¢ . However,
we can obtain an Integral, which also is an integral of the problem, and
which contains only the two Buler angles 6 and o by expressing, for ex-
ample, the modulus of any of the integrals in (18)

€088 J- tan v 8in@ (CB-1cosg cosp + CA~1sing sinp) = const (20)

In order to realize the precession of the body from some initial position
Bys Vos o tO @ required final position 6,, §;, ¥ 1t 1s necessary to choose
in an appropriate way the flywheel axis setting angles . and v and also
its precession angle 1 . Here we should keep in mind that both the values
of the moments of inertia 4, F and { , as well as the directlons of the
principal axes in the body, generally speaking, depend on the flywheel set-
ting angles u and v . However, for comparatively small-sized flywheels
this dependence can be neglected in practice. Then, in order to determine
the angles u and v , we can directly use the obtalned integrals {19) and
(20). The final formulas for determining the setting angles of the flywheel
axls can be written as

Bunp = A [sin Ay (cos0, cos @y sin 8, — cos8, cos g sin 6;) +
+ cos A (sin @, sinf, + sin @, sin8;) — sin8; sin @; — sin@, sing,] X
X [sin Ay {— cosB, sing, sinBy + cos0,y sing,sinby)
+ cos Ay (cos ¢, sinB, - cos g sinB,) — sin §; cosP; — sinby cos @yt @1
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C tanv = [c0osB, — cos0,] [B-1cosp (sinB, cos g, — sinBy cos q,) +
+ A-1sinp (sinB, sin ¢, — sinBy sin pg)]? (22)

Ap =19 — o

By knowing u and v it 1s easy to compute A and k&, , , and then,
using any of the integrals in (18), to find also the angle’ Tt . Thus, the
derived formulas make 1t possible to determine the flywheel settlng angles
and its precession angle T , needed for realizing the required reorien-
tatlon of the supporting body.

In order to elucldate the general nature of the motion of the supporting
body under the action of an interngl flywheel rotation, we return again to
integrals (17). Expression (12) is written as

k =(1i—

tcot v \ [COS?
1,2

) Tt Sifl’:p )_%R exp ["‘i an” ('fl_ h“)] (23)

Let us introduce the new angles u* and ¥ defined by Formulas

B 1 2 in? u \¥
tan p*¥ = —rtanpi, cosv*=chv, sinv*=f(0(§,p+sﬁ,p). (24)

Then, for the coefficients 4, and Kk, we get
ky = cot 1vkei" kg = — tan 1/py¥e~ " (25)

By substituting these expressions into integrals (17) and by multiplying
them by some constant factors, we write them in the form

(@ cos /v*e " — i sin 1/,v*e %) ¢/ = const
(— i sin 1/yvke™ 5" - B cos 1/v*e ) ¢ /4T = const

The expressions in the brackets are the Cayley-Klein parameters of the
total precession from a system of stationary axes to a system of axes con-
nected to the supporting body but not coinclding with its principal inertia
axes. We can call this latter system of axes connected to the body, the
accompanylng system since one of its axes, by forming the angles u* and v¥
with the principal inertia axes of the body, accompanies the flywheel axes
in the body; tan p* and tan v* are determined from the relations (o).

(26)

The angle u*, although 1t will not be an Euler angle (a precession angle),
actually differs from it by a constant magnitude. Therefore, by denotlng
the Euler angles in the accompanying system of axes relative to the stationary
system by 6%,¢*,p*, and the corresponding Cayley-Klein parameters py a* and
g%, we can write the integrals (26) in the form

AT — const, B*e~ /AT = const 27

or, in the angles 0%, ¢* and o*

a*e

cos 1/,0% MY HO™AT) — congt, sin 1/,0%e /¥ AT = const (28)

Hence, 1t becomes clear at once that the angles 6* and * remain con-
stant during the motion, while the angle ¢* changes linearly with 1 , 1l.e.

0* = 64 = const, P* = P* = const, @ = @g* — AT (29)

Thus, under the rotation of an internal flywheel around an arblitrary fixed
axis, the frame of the supporting body accomplishes a pure rotation around
another fixed axis whose direction in space is given by the angles 6* and
*, and in the body by the angles up* and v*. We note that the integrals
?19) and (20) obtained earlier express nothing but the constancy of the
cosines of the angles between the axis of rotation of the body and the station-
ary coordinate axes. It 1s obvious that the rotation axis of the body co-
incides with the flywheel axis only in the case elther when 4 =B = (C .or
when the flywheel axis i1s directed along one of the principal inertia axes
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of the body.

By the Euler theorem [ 2] every reorientation.of the rigid body can be
kinematically reallzed by means of 1ts precession around some stationary
axic. The results obtalned indicate that similar precessions can be effected
dynamically with the help of one flywheel with a fixed axis. In order to
find the required setting angles of the flywheel axic in the body from the
given initial and final positions of the supporting body, on the basis of
kinematlic constructions [ 2], we should determine the rotation axis of the
supporting body, i.e. find the angles u* and v*, and then, by using for-
mulas (24), compute the desired angles p and v

Thus, calculatiun of precession of the supporting body around an arbitrary
axls under the action of the rotation of an internal flywheel, can be carried
out by relations analogous to the calculation of the precession of the body
around one of its principal inertla axes, i.e. using the equations of planar
precession when calculating spatlal precession.

In .this case the last of Equations (29) will have the ﬁorm
JT + ¢* (C? cos? v¥ + B2 sin® v* cos? p* + A2 sin? v* sin? p*)"2 = const (30)

where the square root plays the role of some reduced moment of inertia of

the supporting body relative to 1ts rotatlon axls. Of course, this conclusion
remains valid only in the case when the 1nitial kinetic moment of the sup-
porting body-wheel system equals zero.
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